
Reusing functional aspects : from composition to
parameterization

Alexis Muller
Laboratoire d’Informatique Fondamentale de Lille

UMR CNRS 8022
Université des Sciences et Technologies de Lille

F-59655 Villeneuve d’Ascq cedex, France

Alexis.Muller@lifl.fr

ABSTRACT
We are considering in this paper the difficult task of the
design of information systems requiring to take into account
a great number of entities and concerns functional or not.
Several approaches have been proposed in order to structure
and thus simplify the design of such systems.

Considering the concepts of views and components, we pro-
posed a model of design allowing the reuse of functional
aspects. This paper summarize it and give some criticisms
about it and other composition based approaches. Other
approaches, based on a model of parameter setting, are pre-
sented. Finally, this paper concludes with the advantages
that parameterized based approaches can brings to the reuse
of functional aspects.

Keywords
functional aspects, composition, parameterization

1. INTRODUCTION
The design of information systems remains at the present
time a difficult task which requires that great number of
entities and concerns be taken into account whether they are
functional or not. Several approaches have been proposed
in order to structure and thus simplify the design of such
systems.

Quote first the objects oriented approaches and the compo-
nents approach[14, 10], which allow a system to be struc-
tured relative to its entities. If these approaches allowed
a first and significant simplification for the design of infor-
mation systems, they did not entirely solve the problem.
Indeed, the complexity of these systems is such that each
entity must take into account a large number of concerns
spread over a great number of entities.

Consequently, approaches supporting a decomposition of sys-
tems according to their functional dimensions were thus pro-
posed at the programming level with AOP (Aspect-Oriented
Programming) [9] but also at the design level with the SOD
(Subject-Oriented Design) [5] or with views approaches [6].

In this paper we are interested here in a design for the reuse
of components for information systems adaptable in their
functional or ”business” dimensions (aspect).

The problem of the reuse of these functional aspects arises
now. Indeed, this reuse must make it possible to improve the
productivity and reliability in the field of information sys-
tems design. Various approaches propose the reuse of func-
tional aspects in various forms, like the design of reusable
frameworks[7] or in the form of UML templates [4].

Considering the concepts of views and components, we also
proposed a model of design allowing the reuse of functional
aspects [11]. This model that is summarized in section 2
allows the design of what we called ”view components”. By
connecting these components we are able to create new views
for a system.

Finally, in the last section we will give some criticisms of
our model and other composition based approaches. Then
we will present some techniques, used in other approaches,
based on a model of parameter setting. And we will conclude
with the advantages that parameterized based approaches
can brings to the reuse of functional aspects.

2. THE VIEW COMPONENT MODEL
The idea of the software components [17] is strongly inspired
by what exists in the other industrial fields (mechanical,
electronic. . .). The goal is to be able to create a software
as one assembles a television or a car, by assembling exist-
ing components and limiting the specific developments to
the minimum. The object oriented programming addresses
this quest of reuse and makes it possible to obtain libraries
for structures of rich data (lists, piles. . .) or for ”stan-
dard” functionalities (like the services common objects of
CORBA[13]) or in the field of the Human-machine inter-
faces. At higher level of granularity, the design by software
components must allow a more complex reuse of structures
by making them available as soon as possible in the lifecy-
cle. This type of components, sufficiently complex to con-

tain some ”know to make”, is called a business component.
These are the ones we consider in our approach.

We propose to consider components approaches and views
approaches in the same model : the first approach bringing
the principle of reuse and configuration, and the second one,
bringing a method of coherent structuring, richer than the
traditional object oriented approach. In our model views
are full right components. Giving a statute of components
to views makes it possible to preserve the structuring in
functional aspects until the exploitation. This presents mul-
tiples benefits : a perfect traceability of functions, a better
ability to the reuse these components. By comparison, the
approaches previously quoted are based upon a fusion pro-
cess of the various functions at programming level and do
not offer such benefits.

To illustrate the benefits of views and promoting them as
components, let us consider a system for managing a univer-
sity library. Such system must offer functionalities to seek a
document, to manage the resources of the library (addition,
transfer, suppression) as well as the borrowing of documents.
This system is represented by Figure 1 with the traditional
object oriented approach. We can observe that functions of
the system are all ”intertwined” into the classes.

Location

identifiant
addresse
capacity

Document* findAll()
void transfer(Location l)
void Add(Document d)
void Delete(Document d)

Document

title
publication_date

Location location()
Document findByTitle()
Document findByDate()
int nbAssagnment()
bool free(date begin, date end)

Team

name

researcher

name
arrival_date

Assign

assign_date
due_date
return_date

Client

name
subscription_date

int nbAssignment()

Book

ISBN

Periodique

number

0..*
publish

0..*

1..*

contain

0..*

0..*

reference

Figure 1: Object oriented approach

As illustrated in Figure 2 views approaches adds functional
decomposition to structural decomposition by classes. The
various functions, stock management (at the top), document
search (on the left) and borrowing management (at the bot-
tom) are separated from the base (in the middle). Each func-
tion describes only the elements which it adds. The common
elements are represented in the base. The added elements
can be attributes (capacity in the management function),
operations (transfer), or new classes (Assign in the borrow-
ing function). The matching of entities between functions is
determined here by using the same name.

Location

identifiant
addresse

Document

title
publication_date

Team

name

Reseracher

name
arrival_date

Client

name
subscription_date

Book

ISBN

Periodique

number

0..*

publishes

0..* 1..*

Location

Document* findAll()

Document

Location location()
Document findByTitle()
Document findByDate()

0..*

Location

void transfer(Location l)
void add(Document d)
void delete(Document d)

Document

0..*

capacity

Document

int nbAssignment()
bool free(date begin,
 date end)

Assign

assign_date
due_date
return_date

Client

int nbAssignment()
contain

0..* 0..*

reference

Document search

Stock management

Borrowing manager

Figure 2: Views approach

These functional views are related to a base. To make these
views generic, we propose to disconnect them from any base
and make them components by identifying the necessary
elements (cf Figure 3). In our abstract model, each view
(here SotckManager, Search and Assignment) correspond
to a Component (view component) made up of ViewClass.
The necessary attributes and associations are specified by
ViewAttribute and ViewAssociation. Each component then
adds the elements it bring (class, attribute, association. . .).
This approach gives the ability to specify a required diagram
for a view component thus disconnecting it from any base.
It is this mechanism which makes it generic. This way, the
component could be applied to any base presenting this dia-
gram. The views elements of the Search component, indicate
that it can be applied to any base diagram containing a class
(playing the role of Location) owning at least two attributes
to materialize the ViewAttribute name and address, and
another class (playing the role of Resource) with attributes
materializing key and date. These two classes must be linked
by an association to materialize the ViewAssociation. The
formal definition of views elements (constituent parts of a
view component) as well as the constraints they are sub-
jected to are detailed in the section 3.

Figure 4 illustrates the reuse of views components upon
an another base. The system we want to obtain is a car
hire system. The configuration of components for this base
is done by a mechanism of connection. The components
are connected to the base and each ViewClass is connected
to the corresponding class (this connection is represented
here by the dotted arrows). The ViewAttribute and the
ViewAssociation are also connected to the base elements
to which they correspond. By using this mechanism, we
bind the views elements to the ”real” base elements. A cer-
tain number of constraints must be respected to ensure the
coherence of these connections (see section 3). In our ap-
proach, the matches between base elements and view com-

<<ViewClass>>
Location

Resource* findAll()

<<ViewClass>>
Resource

Location location()
Resource findByKey()
Resource findByDate()

0..*

<<ViewClass>> Stock

void transfer(Stock l)
void add(Resource r)
void delete(Resource r)

<<ViewClass>>
Resource

0..*

identifiant <<ViewAttribute>>
capacity

<<Component>> StockManager

identifiant <<ViewAttribute>>
<<ViewAssociation>>

name <<ViewAttribute>>
address <<ViewAttribute>>

key <<ViewAttribute>>
date <<ViewAttribute>>

<<ViewAssociation>>

<<Component>> Search

<<ViewClass>> Product
Assign

<<ViewClass>> Client

int nbAssignment()

contain

0..*
0..*

reference

<<Component>> Assignment

identifiant <<ViewClass>>
identifiant <<ViewAttribute>>

int nbAssignment()
bool free(date begin,
 date end)

Assign_date
dur_date
return_date

Figure 3: Dconnexion of the functions

<<ViewClass>>
Location

Resource* findAll()

<<ViewClass>>
Resource

0..*

<<ViewClass>> Stock <<ViewClass>>
Resource

0..*

identifiant <<ViewAttribute>>
capacity

<<ViewClass>> Product
Assign

<<ViewClass>> Client

int nbAssignment()

contain

0..* 0..*

reference

<<Component>> StockManager

identifiant <<ViewAttribute>>
<<ViewAssociation>>

<<Component>> Search

<<Component>> Assignment

name <<ViewAttribute>>
address <<ViewAttribute>>

key <<ViewAttribute>>
date <<ViewAttribute>>

<<ViewAssociation>>

identifiant <<ViewClass>> identifiant <<ViewAttribute>>

Agency
Client

0..*

name
address

Base

name
date
phone
address

Car

matriculation
date
constructor
model

<<ViewClass>>
Location

<<ViewClass>>
Resource

0..*

<<Component>> Search

name <<ViewAttribute>>
address <<ViewAttribute>>

key <<ViewAttribute>>
date <<ViewAttribute>>

<<ViewAssociation>>

0..*

Location location()
Resource findByKey()
Resource findByDate()

void transfer(Stock l)
void add(Resource r)
void delete(Resource r)

Resource* findAll()

Location location()
Resource findByKey()
Resource findByDate()

int nbAssignment()
bool free(date begin,
 date end)

assign_date
due_date
return_date

Figure 4: Reconnexion at another base

ponents are not done by naming anymore, but explicitly by
the establishing connections between them. A mechanism
of constraints checking makes it possible to determine if the
system resulting from this assembly is coherent.

This example illustrates the genericity of views components
applied to two different bases. The components identified
by designing of the university library system are reused the
design of a car hire system. It also illustrates the capacity of
using the same component several times in the same base.
This capacity is shown by the Search component used be-
tween Agency and Car to find the agency a car, and between
Agency and Client to know in which agency a customer is
recorded.

3. VIEWS COMPONENTS METAMODEL
We propose a meta-model of view components, formulated
as an extension of UML 1.4 meta-model. Figure 5 shows the
concepts of this model. The elements displayed on the grey
background correspond to UML meta-model elements. This
meta-model introduces the concept of connection between
an element and a base, thanks to the viewOf and root as-
sociations. The semantics of these two types of relation are

different. A viewOf association indicates that the source el-
ement (of type Component or ViewClass) is an extension of
the target element (respectively of type Package or Class).
On the other hand, a root association means that the source
element (of type ViewAttribute or ViewAssociation) is an
imported part of the target element (respectively of type
Attribute or Association).

In this meta-model, a component is a collection of ViewClass
and Class which can be applied to a Class collection (Package).
Thanks to the connection mechanism, a component can be
modeled independently of the Package to which it will be
applied. This meta-model is provided with two types of
constraints expressed in OCL :

• Design constraints to check coherence at the modeling
phase.

• Connection constraints to check that the system ob-
tained by the assembly of packages is coherent.

Component

ViewClass Class

isActive

Classifier

StructuralFeature

multiplicity
changeability
targetScope

Attribute

initialValue

AssociationEnd

isNavigable
ordering
aggregation
targetScope
multiplicity
changeability
visibility

Association

ViewAssociation

Feature

ownerScope
visibility

ViewFeature

ViewStructuralFeature

ViewAttribute

+viewOf

+viewOf
+type

0..*

+participant
+association

 *

+specification

+specifiedEnd

 *

+owner

+feature

0..1

0..*

+root

+root

+connection

2..*

Package

Figure 5: Le mtamodle

3.1 Description of Meta-model Elements
A Component is a specialization of the Package UML
meta-class. Its role is to contain all the ViewClass, Class
as any other UML element necessary to the modeling of the
view component.

A ViewClass is a specialization of the Classifier UML
meta-class UML. An instance of ViewClass can contain
the same elements as another Classifier as well as View-

Attribute. The viewOf association (between a ViewClass

and a Class) indicates in which base Class the root Attribute
of the ViewAttribute of the ViewClass must be in.

A ViewFeature is an abstract element constituent of
Classifier like StructuralFeature or BehavioralFeature.
It indicates, by the root association, a base Feature. It
is ViewFeature elements that are used to specify the re-
quired information. The ViewStructuralFeature element
specializes ViewFeature by imposing a StructuralFeature

as root.

A ViewAttribute is a ViewStructuralFeature which must
have its root association linked to an Attribute. A View-

Attribute must belong to a ViewClass. It is the only ele-
ment of ViewFeature type which is not abstract, therefore
the only one being able to appear in a model.

A ViewAssociation is a specialization of the Association

UML meta-class. An instance of this one makes it possible
to specify and import with connection an Association of
the Package to which is applied (by the viewOf bond) the
Component.

The use of these concepts, is illustrated by Figure 4. Only
the concept of ViewFeature does not appear in this exam-
ple since it is abstract.

3.2 Constraints
We present here the constraints defined for our meta-model.
They are classified in two categories : design constraints to
check properties on the structure of the view components,
and connection constraints to check that the assembly is
correct and corresponds to a coherent model.

Design constraints
Design constraints guarantee that view elements are indeed
contained by an element intended to contain them. I.e. that
a ViewClass does belong well to one Component (constraint
1), and similarly for the ViewAssociation (constraint 3).
Also, ViewAttribute does belong well to a ViewClass (con-
straint 2).

[1] A ViewClass must be in a Component.
context ViewClass inv :

self.package.oclIsKindOf(Component)

[2] A ViewAttribute must be in a ViewClass.
context ViewAttribute inv :

self.owner.oclIsKindOf(ViewClass)

[3]A ViewAssociation must be in a Component.
context ViewAssociation inv :

self.namespace.oclIsKindOf(Component)

Connexion constraints
These constraints check conformity properties between type
of an Attribute and type of a ViewAttribute (constraint 7),
as well as their meta-types (constraints 4), or to check that
the structure formed by the view elements corresponds to
the one formed by the elements to which they are connected
to (constraints 5, 6, 8, 9, 10).

[4] The root of a ViewStructuralFeature must be a
StructuralFeature.

context ViewStructuralFeature inv :
self.root.oclIsKindOf(StructuralFeature)

[5] For all ViewAttribute of a ViewClass, the root
owner must be the viewOf of the ViewClass.

context ViewClass inv :
self.allFeatures->select(f |

f.oclIsKindOf(ViewAttribute))
->forAll (f : ViewAttribute |

f.root.owner = self.viewOf)

[6] The root owner of a ViewAttribute must be a Class.
context ViewAttribute inv :

self.root.owner.oclIsKindOf(Class)

[7] A ViewAttribute and his root must have the same type.
context ViewAttribute inv :

self.root.oclIsType(self.type)

[8] For each ViewAssociation of a Component, if there is
a ViewClass in which his viewOf participates in the
ViewAssociation.root, then this ViewClass must
participates in the ViewAssociation.

context ViewAssociation inv :
self.namespace.allContents->select(v |

v.oclIsKindOf(ViewClass))
->forAll(v : ViewClass |

self.root.allConnections->collect(type)
->includes(v.viewOf)

implies self.allConnections->collect(type)
->includes(v))

[9] Every ViewClass of a Component must have the same
viewOf Package as the viewOf Component.

context Component inv :
self.allReferencedElements->select(v |

v.oclIsKindOf(ViewClass))
->forAll (v : ViewClass |

v.viewOf.package = self.viewOf)

[10] There mustnot be two ViewClasses of the same Class
on a Component.

context Component inv :
self.allReferencedElements->select(v |

v.oclIsKindOf(ViewClass))
->forAll (v1, v2 : ViewClass |

not v1.viewOf = v2.viewOf)

3.3 Implementation
We implemented this meta-model in the form of a profile
for the UML Objecteering tools. This profile makes it pos-
sible to check if a given UML diagram is in conformity with
our abstract model, by the checking of the design and con-
nection constraints (translated into J, the proprietary lan-
guage of Objecteering). It also supports automatic genera-
tion of IDL3 specifications for developing view components
in the Corba Component platform. We also implemented
this model on the Fractal platform [2]. Another realization
was also implemented for the EJB platform leading to the
generation of an executable code, based on our view pattern
[12].

We obtain a model of view components that is usable and ex-
ploitable. However, this realization raised some weaknesses.
We present them in the following section and we also present
the approaches which we are studying in order to improve
our model.

4. COMPOSITION OR PARAMETERIZA-
TION

Approaches allowing the decomposition of a system follow-
ing its functional or technical dimensions aim to simplify the
design of information systems. However to form the global
system all the dimensions must be assembled. Various ap-
proaches exist to express this assembly. For our model we
used a technique of connexions composition.

However, our approach suffers from several weaknesses. It
requires the addition of new meta-classes to UML meta-
model to allow the expression of necessary elements and

their connection, as well as a complex set of constraints
to check the connections coherence. Currently, it only of-
fer the connection of a view component to a base and not
to another view component. This prevent sharing entities
between several view components except those identified by
the base, or the functional enrichment of elements of other
view components. Finally, the connection mode we propose
is not easy to use. Indeed, it requires connecting elements
of view components and base one by one, which results in
a great number of dependencies harming the legibility of
models. Thus, the connection of a component to the base
is not made by only one relation, but by all these depen-
dencies. Consequently, We are currently studying various
approaches to improve our model on these various points.
In the following we first review approaches that use, com-
position to express the systems assembly, like our model.
Next we discuss approaches that express this assembly by
parameterization.

4.1 Composition
The Subject-Oriented Design approach [15] proposes the de-
sign of an independent model for each concern of the sys-
tem. These models are called Subject and take the form of
a standard UML Package. A new type of relation (Com-
positionRelationship) is proposed to compose subjects and
express the composition of their elements. Two strategies
of integrations are proposed, Override and Merge. Override
aims to replace an element by another whereas Merge allows
the merging of two elements into one. Moreover, one spe-
cialization of this relation (CompositeComposition) makes it
possible to express the composition of composite elements
which are Classifiers, Collaborations and Subjects. A cri-
terion of correspondence can be attached with this relation
to indicate whether elements of the same name constituting
the composites represents the same entity or not.

This approach offers the expression of various dimensions
of the system using standard UML elements and proposes
an elegant composition relation of these various dimensions.
Nevertheless, the ease of use of this approach is based on
the fact that the composed subjects come from the analysis
of the same system. That is the reason why, most of the
elements denoting same concepts have the same name. The
compositions relations are thus simplified and need to be
”detailed” only when this property is not respected.

The Catalysis approach [7] proposes to decompose the de-
sign of systems in horizontal and vertical slices. Vertical
slices correspond to a functional decomposition of the sys-
tem from the points of view of various categories of users.
Horizontal slices give a decomposition according to the tech-
nical concerns of the system. In this approach, packages are
also used to represent the various slices of the system. In-
tegration of these slices is based on join relations between
packages. This join relation corresponds mainly to the im-
port relation of UML, but specifies that elements having the
same name must be merged by default.

Within our context, which is the reuse of functional aspects,
various dimensions are not conceived by analysis of a par-
ticular system, but by analysis of a function designed to
be reused in different systems. Since entities of the same
function in various fields being named differently, we can-

not use elements nomenclature to simplify our connection
model. Moreover, in order to design and validate functional
dimensions independently of any system, it is necessary to
clearly identify necessary elements and supplyed elements.
The first ones corresponding to elements which must play a
part in the function but which are not owned by it; the sec-
ond ones being specific elements to this function. For these
reasons, these techniques are not adapted to the definition
and the use of reusable functional aspects.

4.2 Parameterization
The Catalysis approach proposes other constructions in or-
der to design reusable packages : model frameworks. Those
are represented using template packages which are abstract
packages containing some elements that must to be replaced
to be concretized and used. In the Catalysis approach, tem-
plate elements which must be substituted are identified us-
ing the symbols ’<’ and ’>’.

Figure 6: Template package of the owner to observe
according to the Catalysis notation

Figure 6 shows this notation to represent the observer pat-
tern [8]. The required elements to realize this template pack-
age are Subject, Observer, value and value view.

The Theme approach [16] proposes an analysis method of
the system (Theme/Doc) allowing identification of relations
between various functionalities, and a notation (Theme/UML)
allowing modeling of these various functionalities in the form
of parametrized packages called Theme. A relation (named
bind) is used to express the parameterized composition of
two Themes. The checking of assembly is done by adding in-
formations of compositions to the analysis graph (Theme/Doc).
Figure 7 shows the Theme/UML notation to express a ”Theme”
for the observe pattern. Figure 8 illustrates the use of the
bind relation to apply the previous theme to a package.

Figure 7: Template package of the owner to observe
according to the notation Theme/UML

Figure 8: The bind relationship of Theme/UML

Lastly, UML notation [1] also offer the possibility of defining
template packages. Those take the form of ”standard” pack-
age that list elements having to be provided to construct the
package in a dotted rectangle located at the top right hand
corner. The concretization of a template is expressed using
a bind relation which indicates how the resulting package
was actually built from the template [3].

5. CONCLUSION
In this paper we presented our model of views components,
which allow us to specify at a model level of the generic
units of design for the functional enrichment of information
systems. We described it by formulating an extension of
UML meta-model and a set of constraints. We also experi-
mented this approach on various platforms and we entirely

automated the generation of technical code for the EJB plat-
form. Finally we presented some weaknesses of our model
and studied other approaches proposing the use of parame-
terization.

These approaches based on parameterized compositions ap-
pear adapted to our views components. The parameteriza-
tion could express the adaptation of a generic view compo-
nent on a particular system, and the composition could ex-
press the assembly of the various components to describe the
global system. We are thus studying a new expression mode
of our view components based upon the UML templates in
order to bring us closer to standard notation. Lastly, the
use of parameterized composition approach makes it possi-
ble to reduce the connections checking problem, requiring a
great number of constraints, in a parameters type checking
problem.

6. REFERENCES
[1] U.M.L. Home Page,

http://www.omg.org/technology/uml, 2001.

[2] O. Barais, A. Muller, and N. Pessemier. Extension de
Fractal pour le Support des Vues au sein d’une
Architecture Logicielle. In Objets Composants et
Modèles dans l’ingénierie des SI (OCM-SI 04),
Biarritz, France, 2004.
http://inforsid2004.univ-pau.fr/AtelierOCMv1.htm.

[3] O. Caron, B. Carré, A. Muller, and G. Vanwormhoudt.
Formulation of UML 2 Template Binding in OCL. In
UML’2004:7th International Conference on UML
Modeling Languages and Applications, October 2004.

[4] S. Clarke. Extending standard uml with model
composition semantics. In Science of Computer
Programming, Elsevier Science, volume 44, 2002.

[5] S. Clarke, W. Harrison, H. Ossher, and P. Tarr.
Subject-oriented design: Towards improved alignment
of requirements, design and code. In
Objecteed-Oriented Programming Systems, Languages
and Applications (OOPSLA), Denver, November 1999.

[6] L. Debrauwer. Des vues aux contextes pour la
structuration fonctionnelle de bases de donnes objets
en CROME. PhD thesis, Laboratoire d’Informatique
Fondamentale de Lille I, Lille, dcembre 1998.

[7] D. D’Souza and A. Wills. Objects, Components and
Frameworks With UML: The Catalysis Approach.
Addison-Wesley, 1999.

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and
G. Booch. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Westley
Professional Computing, USA, 1995.

[9] G. Kiczales and al. Aspect-oriented programming. In
European Conference on Object-Oriented
Programming (ECOOP), Finland, June 1997.
Springer-Verlag LNCS 1241.

[10] L. Michiel. Enterprise Java Beans Specification v2.1 -
Proposed Final Draft
http://java.sun.com/products/ejb/docs.html. Sun
Microsystems, August 2002.

[11] A. Muller, O. Caron, B. Carré, and
G. Vanwormhoudt. Réutilisation d’aspects
fonctionnels : des vues aux composants. In Langages
et Modèles à Objets (lmo’03), pages 241–255, Vannes,
France, January 2003. Hermès Sciences.

[12] Olivier Caron, Bernard Carré, Alexis Muller, and
Gilles Vanwormhoudt. A Framework for Supporting
Views in Component Oriented Information Systems.
In OOIS, volume 2817 of Lecture Notes in Computer
Science, pages 164–178. Springer, Sept. 2003.

[13] OMG. CORBA 3 Specification. Object Management
Group, July 2002.
http://www.omg.org/cgi-bin/doc?formal/02-06-33.

[14] OMG. CORBA Components. Object Management
Group, June 2002.
http://www.omg.org/cgi-bin/doc?formal/02-06-65.

[15] Siobhán Clarke. Composition of Object-Oriented
Software Design Models. PhD thesis, Dublin City
University, Jan. 2001.

[16] Siobhán Clarke and Robert J. Walker. Composition
Patterns: An Approach to Designing Reusable
Aspects. In 23rd International Conference on Software
Engineering (ICSE), May 2001.

[17] G. T. Heineman and W. T. Councill.
Component-based software engineering : Putting the
pieces together. AddisonWesley, 2001.

